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A novel, time-independent formulation of the coupled-cluster theory of the polarization
propagator is presented. This formulation, unlike the equation-of-motion coupled-cluster
approach, is fully size-extensive and, unlike the conventional time-dependent coupled-
cluster method, is manifestly Hermitian, which guarantees that the polarization propagator
is always real for purely imaginary frequencies and that the resulting polarizabilities exhibit
time-reversal symmetry (are even functions of frequency) for purely real or purely imaginary
perturbations. This new formulation is used to derive compact expressions for the three
leading terms in the Møller–Plesset expansion for the polarization propagator. The true and
apparent correlation contributions to the second-order term are analyzed and separated at
the operator level. Explicit equations for the polarization propagator at the non-
perturbative, singles and doubles level (CCSD) are presented.
Keywords: Linear-response theory; Polarization propagator; Coupled clusters; CCSD;
Møller–Plesset expansion; Wave functions; Quantum chemistry.

The response of a system (an atom or a molecule) to external perturbations
is described by response functions. This response may be interpreted as the
result of the process in which the system is perturbed at some initial time,
the perturbation is propagated, and the state of the system is examined at
some later time. The linear, quadratic, etc. response functions are defined
by expanding the response, quantified by expectation values of relevant op-
erators, as a power series in external perturbations. Many physical
observables are either response functions themselves or can be derived from
the response functions for some particular choices of the external perturba-
tions. In particular, electric properties such as dynamic multipole
polarizabilities are linear response functions corresponding to external mul-
tipolar fields. The response functions represent also a very useful tool in the

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

Time-Independent Coupled-Cluster Theory 1109

doi:10.1135/cccc20051109



theory of intermolecular forces. For instance, fundamental components (in-
cluding the three-body ones) of the interaction energy such as the induc-
tion or dispersion energies can be expressed through the response functions
of monomers1,2. In particular, the asymptotics of the interaction energy at
large intermolecular separations R can be described in terms of the static
and dynamic multipole polarizabilities3.

The concept of response functions was first introduced in statistical phys-
ics by Zubarev4 and very soon showed its utility in the field of molecular
physics5. Among various response functions, the linear response is of pri-
mary importance. It describes the (leading) first-order response of the sys-
tem to an external perturbation. In practical applications it is much more
convenient to work in the frequency representation, which is the Fourier
transform of the time-dependent response function. The frequency-
dependent linear response function is often referred to as the polarization
propagator5,6 and we shall use this terminology in the present work.

Quite a few computational techniques have been proposed in the litera-
ture which can be used to calculate the polarization propagator with a dif-
ferent degree of accuracy. The simplest approach, referred to as the random
phase approximation (RPA), is equivalent to the time-dependent Hartree–
Fock approach7 and, consequently, neglects the correlation of the electronic
motion. The electron correlation has been initially included using the per-
turbation theory8,9, the so-called higher RPA methods9, or the multi-
configurational Hartree–Fock technique10,11. Somewhat later the time-
dependent Møller–Plesset methods were introduced in the non-relaxed12

and relaxed13 approach. It should be noted that the latter approach can be
formulated in different, nonequivalent ways14–16, depending on the way
the quasi-energy is differentiated with respect to the frequencies of the ap-
plied perturbations.

Interestingly enough, the conceptually more subtle and potentially more
accurate time-dependent coupled-cluster approach to the polarization prop-
agator was already formulated in 1977 by Monkhorst17. One year later, sim-
ilar formulations appeared in the nuclear18 and solid-state physics19. A
slightly improved presentation of the original Monkhorst theory was pub-
lished in the general physics literature by Dalgaard and Monkhorst20. Ini-
tially, the Monkhorst theory met with little interest (see, however, applica-
tions to the excitation energies from the Bartlett21 and Paldus22 groups).
Large-scale applications started to appear only after Koch and Jørgensen23

showed how to efficiently eliminate the second-order cluster amplitudes us-
ing the powerful time-dependent Lagrangian technique. Since then,
Monkhorst theory found numerous applications in calculations of frequency-
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dependent polarizabilities and excitation energies (see, e.g., ref.24 for a re-
cent application to excitation energies and transition dipole moments of
weakly interacting atoms). Current state of the art involves not only the
singles and doubles (CCSD) level of theory25 but also an approximate
(CC3)26–28 and complete (CCSDT)29 treatment of triple excitation effects.

In Monkhorst theory17,20 the polarization propagator is defined as the
time average (over one period of oscillation) of the quasi-energy. The prop-
agator itself, as precisely defined in the next section, is a time-independent
object and one can think of obtaining it from a potentially simpler time-
independent theory. One may recall here that the development of time-
independent approach to the many-fermion theory30 contributed signifi-
cantly to the spread of the many-body techniques (developed originally in
the time-dependent context31,32) in the field of quantum chemistry and
paved the way for the success the coupled-cluster theory enjoys today in
molecular applications. In fact, a time-independent coupled-cluster theory
of the polarization propagator has already been presented in the litera-
ture33,34. The corresponding polarization propagator expression34, derived
within the framework of the equation-of-motion coupled-cluster (EOM-CC)
theory21,35,36, however, contains a disconnected contribution which leads
to size-inconsistent behavior of the resulting polarizabilities25.

In this paper we present a time-independent coupled-cluster theory of
the polarization propagator which does not suffer from this problem. Our
propagator is expressed exclusively in terms of commutators (like the polar-
ization propagator of the Monkhorst theory) which guarantees the
extensivity of the resulting polarizabilities. It differs, however, from the
Monkhorst propagator by exhibiting the correct symmetries resulting from
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FIG. 1
The fifth–order CCD diagram (A) and its complex conjugate diagram (B) included only at the
CCSDTQ level of coupled-cluster theory



the real nature of the molecular Hamiltonian. In particular the dynamic
polarizability tensors predicted by our theory exhibit the time-reversal
symmetry when the cluster operator is arbitrarily truncated, the feature
which does not hold in Monkhorst’s theory.

It is well known that in the conventional (projective) coupled-cluster the-
ory37 the energy is not manifestly real when the cluster operator T is trun-
cated at some excitation level. In terms of diagrams this means that some
diagrams are included, but their complex conjugates (obtained by drawing
the diagrams upside down and performing the particle-hole conjugation)
are not. In particular the diagram A in Fig. 1 is included in the coupled-
cluster doubles (CCD) model but its complex conjugate, diagram B, is not.
Diagram B would be included only when the quadruple excitations were
taken into account38, i.e., at the CCSDTQ level or in a variational coupled-
cluster doubles (VCCD) theory39. It should be noted that taking the real
part of the coupled-cluster energy expression, as advocated in refs.40,41, does
not solve the problem. Both diagrams A and B of Fig. 1 would then be in-
cluded but with a wrong coefficient of 1/2. The fact that the set of cou-
pled-cluster diagrams corresponding to a specific truncation of T is not
closed under the complex conjugation does not cause difficulties in
ground-state energy calculations since for real orbitals the cluster coeffi-
cients are always real. The violation of the Hermitian symmetry has more
serious consequences in the conventional time-dependent coupled-cluster
theory17,20,23, since it leads to polarizability tensors that do not exhibit the
time reversal symmetry, i.e., are not even functions of frequency for purely
real or purely imaginary perturbations. The approach presented by us in
this paper is Hermitian in the sense that any restriction of the excitation
space in the coupled-cluster Ansatz for the wave function does not break
the correct symmetry of the polarization propagator under complex conju-
gation and does not lead to a violation of the time-reversal symmetry. All
final equations of our theory are written exclusively in terms of commuta-
tors which ensures the connectedness and, consequently, the size
extensivity of the resulting propagators.

THEORY

General Definitions

The polarization propagator 〈〈 〉〉A B; ω for a non-degenerate N-electron sys-
tem described by the Hamiltonian H is defined by the expression (see, e.g.,
ref.6)
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− +

〉 − 〈
−
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B; | |ω ω − ω
Ψ Ψ Ψ Ψ0

0
0 0

0
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where Ψ0 is the normalized ground-state wave function, E0 = 〈Ψ0|HΨ0〉 is the
ground-state energy, Q is the projection on the space spanned by all excited
states, and ω is interpreted as a (generally complex) frequency. The opera-
tors A and B can be arbitrary although usually only one-particle Hermitian
operators are considered. The polarization propagator describes a linear re-
sponse of the system to the perturbation (A or B) oscillating with the fre-
quency ω and is usually derived within the time-dependent perturbation
theory42. The expression on the right-hand side of Eq. (1) can also be taken
as a definition of 〈〈 〉〉A B; ω without any reference to the time-dependent der-
ivation and then applied in different contexts to obtain, e.g., the excitation
energies, transition moments, or various contributions to interatomic and
intermolecular interaction energies. From now on we shall assume that the
operators A and B are Hermitian. This assumption does not result in any
loss of generality because the definition of Eq. (1) is separately linear in A
and B, and any non-Hermitian operator can be written as a linear combina-
tion of Hermitian ones.

The propagator 〈〈 〉〉A B; ω exhibits the following Hermitian symmetry

〈〈 〉〉 ∗ = 〈〈 〉〉 −A B A B; ;ω ω∗ (2)

valid if the perturbations A and B (and the Hamiltonian H) are Hermitian.
For pure imaginary frequencies (which are of special importance for inter-
molecular forces) ω* = –ω, and, consequently,

〈〈 〉〉 ∗ = 〈〈 〉〉A B A B; ; (ω ω ω ωfor * = – ) (3)

i.e., the propagator is real for any operators A and B. The second term in
Eq. (1) is then a complex conjugate (c.c.) of the first one and does not have
to be separately computed. This simplification does not occur for other fre-
quencies (including the real ones). In the general case the second term in
Eq. (1) can be obtained by computing the first one for the frequency –ω*
and by taking the complex conjugation. This operation, reducing to the
usual c.c. operation for pure imaginary frequencies, will be referred to as
the generalized complex conjugation and will be denoted by g.c.c.
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For real frequencies and for purely real or purely imaginary perturbations
(and a real Hamiltonian), Eq. (2) reduces to

〈〈 〉〉 = 〈〈 〉〉 −A B A B; ;ω ω (4)

which reflects the time-reversal symmetry. As a result of the Schwartz re-
flection principle Eq. (4) holds also for arbitrary complex frequencies. As
mentioned in the introduction the symmetry relations given by Eqs. (2)–(4)
are not fulfilled in the conventional time-dependent coupled-cluster theory
of the polarization propagator17,20,23.

The result of an action of the resolvent Rω = Q(H – E0 + ω)–1 on AΨ0,
needed to evaluate Eq. (1), cannot be easily represented by a cluster Ansatz
since RωAΨ0 is orthogonal to Ψ0, a condition impossible to fulfill automati-
cally by a cluster expansion. Therefore, instead of the function RωAΨ0 we
consider a modified first-order wave function

Ψ Ψ Ψ0 0
( ) ( ) ( )1 ω ω ω= −c R A (5)

where c(ω) is a certain frequency dependent constant different from zero.
The constant c(ω) will be fixed later by assuming that Ψ(1)(ω) fulfills the
orthogonality condition consistent with the coupled-cluster Ansatz em-
ployed to represent Ψ(1)(ω). It is easy to see that Ψ(1)(ω) satisfies the conven-
tional first-order perturbation equation

( ( ) [ ( ) ]( )H E c A A− + = + −0
1ω ω ω ω)Ψ Ψ0 (6)

where

A A= 〈 〉Ψ Ψ0 0| . (7)

Using the definition (5) we can express the polarization propagator 〈〈 〉〉A B; ω

by the following formula

〈〈 〉〉 = 〈 − 〉 +A B B B; |( ) ( )( )
ω ωΨ Ψ0

1 g.c.c. (8)
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valid for an arbitrary value of c(ω). Equations (6) and (8) will be used as a
starting point in deriving our coupled-cluster representation of the polar-
ization propagator.

Coupled-Cluster Representation of the Zeroth- and the First-Order
Wave Functions

To obtain a coupled-cluster hierarchy of approximations to Eq. (8), we re-
present the wave function Ψ0 using a renormalized form of the conven-
tional exponential Ansatz

Ψ Φ Φ Φ0
1 2= 〈 〉 −e e eT T T| / (9)

where Φ is the Hartree–Fock determinant, and the cluster operator T is de-
fined as

T T T n t en
n

N

n n

n

n

n= =
=

−
…
…

…
…∑

1

2

1

1

1

1, ( !) ρ ρ
α α

α α
ρ ρ (10)

with e
n

n
α α
ρ ρ

1

1
…
… denoting the product of the annihilation (aα) and creation (aρ

† )
operators: a a a aρ ρ α α1 2 2 1

† † K . Summation over repeated lower and upper indices
is implied throughout this paper. We shall always assume that the indices
λ, κ refer to all spinorbitals, while α and ρ label exclusively occupied and
virtual spinorbitals, respectively. We assume that T is known from the con-
ventional coupled-cluster calculations involving a specific truncation of the
excitation structure of T.

For the first-order wave function Ψ(1)(ω) we employ the following coupled-
cluster-like Ansatz

Ψ Φ| Φ Ω Φ( ) /( ) ( )1 1 2ω ω= 〈 〉 −e e eT T T (11)

where Ω(ω) is a cluster operator of the form

Ω Ω Ω Ω( ) ( ) , ( !) .ω ω ρ ρ
α α

α α
ρ ρ= =

=

−
…
…

…
…∑ n

n

N

n n e
n

n

n

n

1

2

1

1

1

1 (12)

Substituting Eq. (11) into Eq. (6) we obtain
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([ , ( )] ( ) ( ) ) .H A c A TΩ Ω Φω ω ω ω ω+ + − − =e 0 (13)

Multiplying Eq. (13) with e–T and projecting against e
n

n
α α
ρ ρ

1

1
…
… Φ and Φ, we find

an explicitly connected (i.e., involving only commutator products of opera-
tors) equation for the operator Ω(ω)

〈 + + 〉 =…
… − −e H A

n

n T T T T
α α
ρ ρ ω ω ω

1

1 0|[ , ( )] ( )e e e eΩ Ω (14)

and an expression for the constant c(ω)

c H HT A AT A( ) [ ( ) ( ) ] .ω
ω

ω ω= 〈 〉 + 〈 〉 + 〈 〉 + 〈 〉 −1
2 1 1 1Ω Ω (15)

In Eqs. (14) and (15) and in the ensuing text we use the following short-
hand notation for scalar products and expectation values

〈 〉 = 〈 〉 〈 〉 = 〈 〉X Y X Y X X| | | .Φ Φ Φ Φand (16)

The constant c(ω) does not enter Eq. (14) and is not needed to compute
〈〈 〉〉A B; ω . It should be noted that our equation for the first-order cluster am-
plitudes is the same as that appearing in the theory of Monkhorst17,20 or in
the EOM-CC approach21,35.

Explicitly Connected Expression for the Polarization Propagator

Inserting Eqs. (9) and (11) into Eq. (8) leads to a complicated expression in-
volving numerous disconnected terms. To eliminate these nonphysical
terms we shall make use of the commutator expansion of the expectation
value of an operator developed in ref.39

A
A

A A
T T

T T

S T T S T T S= 〈 〉
〈 〉

= 〈 〉 = 〈 〉− − −e e

e e
e e e e e e e

|

|
|

† †

(17)

where S is an excitation operator
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S S S n S en
n

N

n n

n

n

n= =
=

−
…
…

…
…∑

1

2

1

1

1

1, ( !) ρ ρ
α α

α α
ρ ρ (18)

uniquely defined by the equation

e
e e

e eS

T T

T TΦ Φ=
〈 〉

1
|

.
†

(19)

It was shown in ref.39 that the operator S is connected and satisfies a linear
equation which contains only finite powers of T and which can easily be
solved by iterations. The S operator plays a similar role to that of the Λ† op-
erator used in the coupled-cluster gradients theory43,44 but, unlike Λ†, it is
connected. When T = T1 + T2, the only truncation level we shall consider in
this work, then up to O(T3) terms we have39

S T T T O T= + +$ ([ , ]) ( )†P1 1 2
3 (20)

where $Pn is the superoperator projecting on the space spanned by excita-
tion operators

$ ( ) ( !) .Pn X n e X e
n

n

n

n= 〈 〉−
…
…

…
…2

1

1

1

1
ρ ρ
α α

α α
ρ ρ (21)

Using the coupled-cluster representations for Ψ(1)(ω) and for Ψ0, the first
term on the right-hand side of Eq. (8) can be rewritten as

〈 − 〉 = 〈 〉
〈 〉

− 〈 〉Ψ Ψ (ω) Ω Ω(1)
0 |( )

| ( )

|

| ( )
B B

B
B

T T

T T

T Te e

e e

e eω ω
〈 〉e eT T|

. (22)

Making use of the definition of the operator S one can transform the first
term on the right-hand side of Eq. (22) as follows

〈 〉
〈 〉

= 〈 〉 = 〈− − −B
B B

T T

T T

T T S S T Te e

e e
e e e e e e

| ( )

|
| ( )

† † † †Ω Ωω ω e e eS S S| ( ) .
† †

Ω ω − 〉 (23)

When deriving the above equation we used the fact that e–TΩ(ω)eT = Ω(ω),
and that e − =S †

Φ Φ. The ket on the right-hand side of Eq. (23) can be trans-
formed using the identity
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X X XΦ Φ Φ= 〈 〉 + $( )P (24)

where $( ) $ ( ) $ ( ) $ ( )P P P PX X X XN= + + +1 2 K , valid for an arbitrary operator X.
Setting X S S= −e e

† †

( )Ω ω and using Eq. (24), one obtains

〈 〉
〈 〉

= 〈 〉 〈 〉 +

+

− − −e e

e e
e e e e e e

T T

T T

S T T S S SB
B

| ( )

|
( )

† † † †Ω Ωω ω

〈 〉− − −e e e e e eS T T S S SB
† † † †

| $| ( ) .P Ω ω

(25)

The first term on the right-hand side of Eq. (25) is equal to the unlinked
term

B
T T

T T

〈 〉
〈 〉

e e

e e

| ( )

|

Ω ω
(26)

in Eq. (22) and cancels out exactly when the subtraction in Eq. (22) is car-
ried out. Thus, only the second term in Eq. (25) makes a contribution and
we find that the polarization propagator is given by a finite series of nested
commutators:

〈〈 〉〉 = 〈 〉 +− − −A B BS T T S S S; | $| ( )
† † † †

ω ωe e e e e e g.c.c.P Ω (27)

where 〈 〉 ≡ 〈 〉X Y X Y| $| | $( )P P . Equation (27) is the main result of this paper. It
shows how the polarization propagator can be expressed in terms of the
cluster operators T, S, and Ω(ω). Equation (14) and the nested commutator
expansion of S in terms of T, given in ref.39, show that the operators S and
Ω(ω) are connected. Since the commutator of two connected second-
quantized operators contains only connected diagrams, the polarization
propagator of Eq. (27) must be connected. The response functions com-
puted using our theory must therefore be size-extensive. This feature of the-
ory, holding for arbitrary truncations of cluster operators T and Ω, simpli-
fies the perturbation (Møller–Plesset) expansion of the polarization propa-
gator and allows for a considerable flexibility in performing infinite-order
size-extensive summations of selected classes of diagrams.

MØLLER–PLESSET EXPANSION OF THE POLARIZATION PROPAGATOR

To show the merits of our coupled-cluster formulation we present here the
Møller–Plesset (MP) expansion of the polarization propagator and present a
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compact form of all terms through the second-order in the Møller–Plesset
perturbation W. The MP expansion for the T operator45 can be most easily
obtained by iterating the operator equation for T, given in ref.39,

T Wn n
T T= −$ ( )R e e (28)

where the resolvent superoperator $R n is defined46 as

$ ( ) ( !) ( )R n X n e X
n n n

n= + … + − − … − 〈 〉− −
…
…2 1

1 1 1

1ε ε ε εα α ρ ρ ρ ρ
α α e

n

n
α α
ρ ρ

1

1
…
… (29)

εκ being the orbital energy associated with the spinorbital φκ. It is easy to
verify that

[ , $ ( )] $ ( )F X Xn nR P+ = 0 (30)

where F = H – W is the Fock operator and $ ( )Pn X the projection super-
operator of Eq. (21).

Iterating Eq. (28) immediately gives the following expressions for the
first- and second-order terms T(1) and T(2) in the expansion of T in powers
of W

T T W( ) ( ) $ ( )1
2

1
2= = R (31)

T W T mm m
( ) ( )$ ([ , ]) , , , .2

2
1 1 2 3= =R (32)

Higher-order terms in this expansion are given in ref.39, where the perturba-
tion expansion for the operator S is also considered in more detail. Here,
suffice it to observe that, in view of Eq. (20), the S and T operators are iden-
tical through the second order in W, i.e.,

S T S T mm m
( ) ( ) ( ) ( ), , , , .1

2
1 2 2 1 2 3= = = (33)

To derive the MP perturbation expansion of the cluster operator Ω(ω), we
transform Eq. (14) by substituting F + W for H and using the identity
e e− =T TF F[ , ( )] [ , ( )]Ω Ωω ω :
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〈 + + + 〉 =…
… − −e F A W

n

n T T T T
α α
ρ ρ ω ω ω ω

1

1 |[ , ( )] ( ) [ , ( )]Ω Ω Ωe e e e 0 . (34)

An analogue of Eq. (28) can be easily obtained if we note that for any oper-
ator X the equation

〈 + + 〉 =…
…e F Y Y X

n

n
n nα α

ρ ρ ω
1

1 0|[ , ] (35)

has a solution Y Xn n= $ ( ),R ω , where $
,R n ω is the ω-dependent superoperator

defined by

$ ( ) ( !) ( ),R n X n e
n n nω α α ρ ρ ρ ρ

αε ε ε ε ω= + … + − − … − − 〈− −
…
…2 1

1 1 1

1 α
α α
ρ ρn

n

nX e〉 …
…

1

1 . (36)

Note that $ $
,R Rn n0 = and that $ ( ),R n Xω satisfies the operator equation

[ , $ ( )] $ ( ) $ ( ), ,F X X Xn n nR R Pω ωω+ + = 0 (37)

similar to Eq. (30). Using $
,R n ω to solve Eq. (34) gives

Ω Ωn n
T T T TA W( ) = (e e e e,ω ωω

$ [ , ( )]) .R − −+ (38)

Iterating Eq. (38) we easily find that the first three terms Ω(0)(ω), Ω(1)(ω),
and Ω(2)(ω) in the MP expansion of Ω(ω) are given by

Ω Ω( ) ( )
,( ) ( ) $ ( )0

1
0

1ω ω ω= = R A (39)

Ω Ωn n A T W( )
,

( ) ( )( ) $ ([ , ] [ , ( )])1
2

1
1

0ω ωω= +R (40)

Ω Ω Ωn n A T T W( )
,

( ) ( ) ( ) ( )( ) $ ([ , ] [ , ( ) (2
1

2
2

2
1
1

2
1ω ω ωω= + + +R )]

[[ , ], ( )])( ) ( )

+

+ W T2
1

1
0Ω ω

(41)

where n = 1, 2 in Eq. (40) and n = 1, 2, 3 in Eq. (41).
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The three leading terms, 〈〈 〉〉A B k; ( )
ω , k = 0, 1, 2, in the MP expansion of the

polarization propagator are easily found by substituting the MP expansions
for T and Ω(ω) into Eq. (27) and collecting terms of appropriate order in W.
Through the second order in W one gets

〈〈 〉〉 = 〈 〉 +A B B; | ( )( )
ω ω0 Ω (0) g.c.c. (42)

〈〈 〉〉 = 〈 〉 + 〈 〉 +A B B B T; | ( ) [ , ]| ( )( ) ( ) ( ) ( )
ω ω ω1

1
1

2
1

1
0Ω Ω g.c.c. (43)

〈〈 〉〉 = 〈 〉 + 〈 〉 + 〈A B B B T B; | ( ) [ , ]| ( ) [ ,( ) ( ) ( ) ( )
ω ω ω2

1
2

2
1

1
1Ω Ω T

B T B T
2

1
2
1

1
2

1
0

2
2

( ) ( )

( ) ( ) ( )

]| ( )

[ , ]| ( ) [ , ]|

Ω

Ω

ω

ω

〉 +

+ 〈 〉 + 〈 Ω Ω1
0

2
1

2
1

1
0( ) ( )† ( ) ( )( ) [[ , ], ]| ( )ω ω〉 − 〈 〉 +B T T g.c.c.

(44)

Note that the triple excitation operators T3 and Ω3(ω) do not contribute at
this level. Using the Wick theorem30, the contraction theorem47, or one of
the codes for symbolic manipulations of second-quantized expressions, one
can easily expand the commutators appearing in Eqs. (42)–(44) in terms of
molecular integrals and orbital energies.

SEPARATION OF THE APPARENT AND TRUE CORRELATION CONTRIBUTIONS

Similarly as in the theory of molecular polarizabilities48; the MP corrections
〈〈 〉〉A B k; ( )

ω contain the apparent and true correlation contributions, the for-
mer defined as those taken into account by the RPA theory and the latter
representing the remaining part of each MP correction. Since RPA calcula-
tions are nowadays rather routine, the apparent correlation can easily be
taken into account by the RPA method and the perturbation theory can be
used to obtain only the true correlation part of the polarization propagator.
For this purpose the apparent correlation effects should be separated from
each MP correction. This separation can be performed12,49 at the level of fi-
nal expressions, containing only molecular integrals and orbital energy dif-
ferences, by using some algebraic identities involving sums of rational func-
tions. In the first order this is relatively easy50. The second-order correction,
however, comprises over fifty terms, and performing such a reduction
would require a rather lengthy algebra. Below we show how such a separa-
tion can be performed at the operator level.
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It is obvious that the zeroth-order correction 〈〈 〉〉A B; ( )
ω
0 contains no corre-

lation, either true or apparent. The first-order correction depends on the
T2

1( ) cluster operator, cf. Eq. (43), and involves two-electron denominators;
so one could think that it takes account of some true correlation. This is
not the case, however, since the T2

1( ) operator can be entirely eliminated from
the expression for 〈〈 〉〉A B; ( )

ω
1 . To demonstrate this we expand the right-hand

side of Eq. (43) using Eq. (40) and obtain

〈〈 〉〉 = 〈 〉 + 〈 〉 +

+

A B B AT BT; $ ( )| | ( )( )
, *

( ) ( ) ( )
ω ω ω1

1 2
1

2
1

1
0R Ω

〈 〉 +$ ( )|[ , ( )], *
( )R 1 1
0

ω ωB W Ω g.c.c.
(45)

where we made use of the “Hermicity” of the resolvent superoperator,

〈 〉 = 〈 〉X Y X Y| $ ( ) $ ( )|*R Rω ω (46)

and of the fact that the commutators in the first two terms can be replaced
by products.

The third term in Eq. (45), corresponding to diagram A in Fig. 2, contains
only one-electron denominators and appears in the RPA theory. This term
and its g.c.c. counterpart, represented by diagram B in Fig. 2, account thus
for the apparent correlation effect. To examine the remaining terms we
consider the sum of the first term and the g.c.c. counterpart of the second
term in Eq. (45), i.e., the contribution

C A B B A T= 〈 + 〉−
$ ( ) $ ( )| ., * , *

( )R R1 1 2
1

ω ω (47)

The two selected terms, corresponding to diagrams C and D from Fig. 2,
contain long, two-electron denominators which originate from the pres-
ence of the T2

1( ) cluster operator. To eliminate this operator we use the iden-
tity

[ , $ ( ) $ ( )] $ ( ) $ ( ) $ ( ) $
, , , ,F A B A B AR R R P P R1 1 1 1 1 1− −= − −ω ω ω ω( )B (48)

resulting directly from Eq. (37). Employing Eq. (24) one can easily find that
the operators A and B in Eq. (47) play the role of single-excitation operators
and can be replaced by their projections $ ( )P1 A and $ ( )P1 B . An obvious applica-
tion of Eq. (48) gives then
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C F A B T A= − 〈 〉 = − 〈− −[ , $ ( ) $ ( )]| $ ( ) $
, * , *

( )
, *R R R R1 1 2

1
1 1ω ω ω , *

( )( )|[ , ] .ω B F T2
1 〉 (49)

In view of Eqs. (31) and (30) we can write [ , ] $ ( )( )F T P W2
1

2= − and, conse-
quently,

C A B W= 〈 〉−
$ ( ) $ ( )|, * , *R R1 1ω ω (50)

where we also made use of the obvious Hermicity of the projection
superoperator $Pn

〈 〉 = 〈 〉X Y X Yn n| $ ( ) $ ( )| .P P (51)
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FIG. 2
First-order diagrams contributing to the polarization propagator. The dot and cross vertices
represent the A and B operators, respectively



The expression on the right-hand side of Eq. (50), corresponding to dia-
gram E in Fig. 2, contains only local, one-electron denominators and is
taken into account by the RPA theory. The g.c.c. counterpart of the terms
included in C is represented by diagrams G and F, or, alternatively by the
single RPA diagram H. The final, alternative expression for 〈〈 〉〉A B; ( )

ω
1 , corre-

sponding to diagrams A, B, E, and H in Fig. 2, can now be written as

〈〈 〉〉 = 〈 − 〉 + 〈A B W W; |
~

( ) ( )
~

( *)|[ ,( ) ( ) ( ) ( )
ω ω ω ω1

1
0

1
0

1
0Ω Ω Ω Ω1

0( ) ( )]ω 〉 + g.c.c. (52)

where
~

( ) $ ( )( )
,Ω1

0
1ω ω≡ R B . We see that the polarization propagator of the first

order in W is fully included in the RPA and represents the apparent correla-
tion effect.

The true correlation contributions, containing ring-type diagrams, appear
starting from the second order. Using the technique presented above, one
can show that the second-order polarization propagator can be split into
two distinct parts, representing the apparent (a) and the true (t) correlation

〈〈 〉〉 = 〈〈 〉〉 + 〈〈 〉〉A B A B A B; ; ( ) ; ( ) .( ) ( ) ( )
ω ω ω
2 2 2a t (53)

The apparent correlation terms, appearing in the second order of the MP
expansion of the RPA propagator, are given by

〈〈 〉〉 = 〈 〉 + 〈 −A B X W W XB B; ( ) ( *)|[ , ( )] | (( ) ( ) ( ) ( )
ω ω ω2 1

1
0 1a Ω ω ω

ω ω ω

) ( )

| ( )
~

( ) ( )

( )

( ) ( ) ( ) (

Ω

Ω Ω
1

0

1
1

0 1
1

0

〉 +

+ 〈 − 〉 + 〈 −W X YA B
) ( *)|− 〉 +ω W g.c.c.

(54)

where X W CC
( )

, ,( ) $ ([ , $ ( )]),1
1 1ω ω ω≡ R R C = A, B, and Y W BB

( )
, ,

†( ) $ ([ , $ ( )])1
1 1ω ω ω≡ − −R R .

The diagrams representing the four consecutive terms in Eq. (54) are given
in Fig. 3.

The true correlation part of the second-order polarization propagator has
the form

〈〈 〉〉 = 〈 〉 + 〈A B B T B T; ( ) [ , ]| ( ) [ , ]|( ) ( ) ( ) ( ) (
ω ω2

2
1

2
1

1
2

1t Ω Ω 0
1

0
1

2

1
0

2
1

) ( ) ( )

( ) (

( )
~

( *)|[ , ]
~

( *)|[ ,

ω ω

ω

〉 + 〈 〉 +

+ 〈

Ω

Ω Ω

A T

W ) ( ) ( ) ( )

( )

( )] [[ ,
~

( *)], ( *)]|ω ω ω〉 + 〈 − 〉 +

+ 〈

W T

T

Ω Ω1
0

1
0

2
1

2
1 |[[B, ],T W2

1
1

0
1

0
1

0( ) ( ) ( )† ( )( )] [[ , ( )],
~

( *)]Ω Ω Ωω ω ω〉 − 〈 | ( )T2
1 〉 + g.c.c.

(55)
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In Fig. 4 we present the (non-oriented) diagrams representing all the terms
written out on the right-hand side of Eq. (55). The first term is represented
by diagrams A, B, C, and D, the second term by diagrams E, and F, the third
term by diagrams G, and H, the fourth term by diagrams I, J, K, and L, the
fifth term by diagram M, and the sixth and seventh term by diagrams N
and O, respectively. The g.c.c. counterparts of these diagrams can be ob-
tained by turning the diagrams up-side down and substituting –ω for ω.

Wormer and collaborators12,49 reported a diagrammatic analysis of the
correlation contributions to the frequency-dependent polarizability in the
second-order perturbation theory. Starting from the standard time-
dependent perturbation theory expressions they derived all Hugenholtz di-
agrams corresponding to the second-order perturbation theory, including
the disconnected diagrams corresponding to unlinked terms, and after a te-
dious algebra they obtained workable expressions in terms of molecular
integrals and orbital energies. It should be noted that a proper cancellation
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FIG. 3
Second-order RPA diagrams contributing to the polarization propagator



of the unlinked terms that appear in the second-order perturbation expres-
sion required explicit inclusion of the triple-excitation terms in the
first-order wave function. Although the long, three-particle denominators
cancel out, this cancellation was not performed in the original presentation
of the theory12, but only in the subsequent work of Wormer and Hettema49.
It should also be mentioned that the diagrammatic analysis of ref.49 was
not entirely unique since the ambiguity resulting from the presence of the
so-called exclusion principle violating (EPV) diagrams was not resolved,
and two versions of the final expressions for the second-order perturbation
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FIG. 4
Second-order non-oriented diagrams representing the true correlation part of the polarization
propagator



contribution were reported in ref.49. Our derivation based on the commuta-
tor expressions appears to be simpler and unique. The elimination of the
long, non-local denominators is not completely trivial, but does not require
considering dozens of diagrams with all possible time orientations, and
energy denominators. Since our propagator expression, Eq. (27), contains only
connected quantities, no unlinked terms appear in the derivation. In partic-
ular triply-excited contributions do not appear at the second order in W.
Let us mention finally that the derivation of the third-order perturbation
contribution to the polarization propagator is quite feasible although, obvi-
ously, substantially more complex than in the second order.

NON-PERTURBATIVE APPROXIMATION SCHEMES

The second-order Møller–Plesset approximation for the correlation contri-
bution to the polarization propagator is quite effective for complex fre-
quencies12,49 and has been extensively employed to compute dispersion in-
teraction energies using the POLCOR package developed by Wormer and
collaborators51. In some cases, however, the Møller–Plesset expansion may
converge slowly or may even diverge. In such situations, or when accuracy
higher than the second-order MP treatment is needed, we have to resort to
a nonperturbative approach, i.e. to an iterative coupled-cluster procedure.
The theory presented by us is quite flexible as far as a specific design of
such a procedure. The corresponding computational scheme consists of
four entirely independent steps, each can be implemented with different
level of accuracy and computational cost.

The first step is the calculation of the ground-state cluster operator T.
Any of the available hierarchy of coupled-cluster approximations to T can
be used. The only requirement is that T must be connected so that the final
propagator expression remains size-extensive. Since equations for T are
highly nonlinear, this step is iterative and is usually expensive.

The second step is the solution of Eq. (14), i.e., the calculation of the Ω
operator. Within the T = T1 + T2, Ω = Ω1 + Ω2 approximation, this is now a
standard procedure used to compute coupled-cluster gradients43,44,52. A
complete inclusion of Ω3 has also been recently implemented29,53. For large
basis sets the computation of Ω is an iterative procedure and can be expen-
sive.

The third step, specific for our method, is the calculation of the S opera-
tor. This operator satisfies a linear equation, given in ref.39, containing very
high (although finite) powers of T, see Eq. (23) of ref.39. Some approxima-
tion is needed to eliminate this high nonlinearity in T. We propose to ne-

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

Time-Independent Coupled-Cluster Theory 1127



glect the fourth and higher combined powers of S and T and to compute S1
and S2 by solving the system of linear equations H In nS( ) = , n = 1, 2, with
the homogeneous part

H n ( ) | [ , [ , ], ] [[† † †S e nS T S T T S T
n

n
n= 〈 − − −…

…
α α
ρ ρ

1

1 2 21 2 1] [ , ], ]T S2 〉 (56)

and the inhomogeneity

I n ne nT T T T T T T T
n

n= 〈 − − −…
…

α α
ρ ρ

1

1
1 2 1 2

1
2

| [ , ] [[ , ], ] [[ ,† † † ], ] .T 〉 (57)

The quartic terms, neglected in Eqs. (56) and (57), would give a contribu-
tion in the fifth order in the MP expansion of the polarization propagator.
It should be emphasized that even if T is restricted to single and double ex-
citations the S3 and higher Sn operators do not vanish. The neglect of S3 and
higher Sn operators leads in this case to a fifth-order error in the MP theory,
so we did not consider these terms in Eqs. (56) and (57). One may also con-
sider omitting the cubic terms in these equations which amounts to the ne-
glect of some fourth-order terms in the MP expansion of the propagator.
One may easily see that the resulting equations for S1 and S2

〈 − − + 〉 =…
…e nS nT T S T T

n

n
n nα α

ρ ρ
1

1 2 01 2 1 2| [ , ] [ , ]† † (58)

uncouple and have a simple, “closed-form” solution S1 = T T T1 1 1 2+ $ ([ , ])†P ,
S2 = T2, fully consistent with Eq. (20).

The iterations needed to solve the linear equations for S can be avoided if
S is approximated by a direct expansion in powers of T, derived in ref.39.
The cubic terms Sn

[ ]3 in this expansion, not written explicitly in Eq. (20), are
given by

S T T T T T T1
3

1 1 1 1 1 2 2 1

1
2

[ ] † †([[ , ], ]) ([[ , ], ])= +P P (59)

S T T T T T T2
3

2 2 2 2 2 1 2 1

1
2

[ ] † †([[ , ], ]) ([[ , ], ])= +P P (60)

S T T T3
3

3 1 2 2

1
2

[ ] †([[ , ], ])= P (61)
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where the S3
3[ ] operator is given here to show only that it does not vanish.

Approximating S using the noniterative Eqs. (59) and (60) leads to the polariz-
ation propagator accurate through the fourth order in the Møller–Plesset
perturbation W.

The last step of the whole calculation is the evaluation of the formula
(27). Since the nested commutator expansion of Eq. (27) involves terms of
rather high order (the seventh order when Ω = Ω1 + Ω2) this expansion
must be truncated for practical reasons. We propose to expand it through
the combined third power of T and S. The successive terms in the resulting
expansion, denoted by 〈〈 〉〉A B k; [ ]

ω , k = 0, 1, 2, 3, are given by

〈〈 〉〉 = 〈 〉 +A B B; ( )[ ]
ω ω0

1Ω g.c.c. (62)

〈〈 〉〉 = 〈 〉 + 〈 〉 +A B S B B S; |[ , ( )] [ , ]| ( )[ ]
ω ω ω1

2 1Ω Ω g.c.c. (63)

〈〈 〉〉 = − 〈 〉 + 〈 〉A B B T S B S S; [[ , ], ]| ( ) [ , ]|[ , ( )][ ] † †
ω ω ω2

1 2Ω Ω +

+ 〈 〉 +1
2

[[ , ], ]| ( )B S S Ω ω g.c.c.
(64)

〈〈 〉〉 = − 〈 〉 − 〈A B B T S S B T S; [[[ , ], ], ]| ( ) [[ , ], ]|[[ ] † †
ω ω3 1

2
Ω S

B T T S B S

1 2

1 1 2

1
2

1
2

† , ( )]

[[[ , ], ], ]| ( ) [[ ,

Ω

Ω1

ω

ω

〉 +

+ 〈 〉 + 〈† †
1 1 1 2], ]|[ , ( )]†S S Ω ω 〉 + g.c.c.

(65)

Equations (62)–(64) correspond to the singles and doubles level of the cou-
pled-cluster theory i.e., to the CCSD propagator. The expansion of the com-
mutator expressions in Eqs. (62)–(64) in terms of one-electron molecular
integrals and cluster amplitudes is straightforward and will not be discussed
here. It may be noted that the last three terms in Eq. (65) give contribu-
tions of, successively, the fifth, fifth and seventh order in the Møller–
Plesset perturbation W and are likely to be negligible. The last two terms in
Eq. (64) and the first term in Eq. (65) are of the fourth order in W and prob-
ably can also be neglected in many cases. The final propagator evaluation
via Eqs. (62)–(64) is a noniterative process and is expected to be much less
time-consuming than the first two steps involving the standard coupled-
cluster calculation of the T1, T2, Ω1 and Ω2 operators. Inclusion of T3 and Ω3
generates additional terms but only a few of them must be included to ob-
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tain the propagator which is accurate through the third order of the
Møller–Plesset theory.

It should be noted that approximating Eq. (27) by Eqs. (62)–(64) leads to
a small (high-order in W) violation of the operator exchange symmetry
〈〈 〉〉 = 〈〈 〉〉A B B A; ;ω −ω of the propagator. This symmetry could be fulfilled ex-
actly if the g.c.c. operation in Eq. (27) were replaced by the operator ex-
change operation (A,ω) ↔ (B,–ω). This replacement would result, however,
in a loss of Hermitian symmetry of the theory and a small violation of the
time-reversal symmetry of the propagator approximated via Eqs. (62)–(64).
Therefore we did not follow this option.

One may ask what is the simplest coupled-cluster approximation to
〈〈 〉〉A B; ω , which is accurate through the second order in W. Such an approx-
imation can be obtained by setting S = T and computing the propagator
from the formula

〈〈 〉〉 = 〈 〉 + 〈 〉 + 〈 〉 −

− 〈

A B B T B B T; ( ) |[ , ( )] [ , ]| ( )

[[
ω ω ω ωΩ Ω Ω1 2 1

B T, ], ]| ( )† Τ Ω ω 〉 + g.c.c.
(66)

where T is the ground state CCSD operator and Ω(ω) is obtained from Eq. (14).
Once the T and Ω operators are known, the evaluation of Eq. (66) is a very
simple one-step noniterative procedure, which gives a propagator account-
ing for all diagrams in Figs. 3 and 4 and for an infinite set of high-order dia-
grams resulting from the coupled-cluster treatment of T and Ω operators.

CONCLUSIONS

We presented a novel approach to the coupled-cluster calculation of the po-
larization propagator. Our approach is fully time-independent and appears
to be conceptually much simpler than the conventional time-dependent
approaches. The resulting propagator is exactly size-extensive and exhibits
the correct Hermitian and time-reversal symmetries. The computational
procedure is the same as in the conventional coupled-cluster gradient cal-
culations, except for additional two simple noniterative steps.

Using the proposed approach one can easily obtain an explicitly con-
nected purely algebraic formulation of the Møller–Plesset expansion for the
polarization propagator. We have outlined a general procedure of separat-
ing the apparent correlation (RPA) terms from this expansion.

The polarization propagators obtained from our theory are particularly
useful for applications to the theory of intermolecular forces. The resulting
dynamic polarizabilities can be directly applied to obtain the large R
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asymptotics of the suitably defined coupled-cluster approximation to the
dispersion energy54. It should be noted that the dispersion energy predicted
by the conventional coupled-cluster approach55 does not have this feature
and is not related to the dynamic polarizabilities of the time-dependent
coupled-cluster theory.
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